8 research outputs found

    Simulation, visualization and dosimetric validation of scatter radiation distribution under fluoroscopy settings

    Get PDF
    2015-2016 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Radiation dose estimation for radiochromic films based on measurements at multiple absorption peaks

    No full text
    US7361908; US7361908 B2; US7361908B2; US7,361,908; US 7,361,908 B2; 7361908; Application No.11/403,677US2007-2008 > Other Outputs > Patents grantedVersion of Recor

    An Automatic Correction Method for the Heel Effect in Digitized Mammography Images

    No full text
    The most significant radiation field nonuniformity is the well-known Heel effect. This nonuniform beam effect has a negative influence on the results of computer-aided diagnosis of mammograms, which is frequently used for early cancer detection. This paper presents a method to correct all pixels in the mammography image according to the excess or lack on radiation to which these have been submitted as a result of the this effect. The current simulation method calculates the intensities at all points of the image plane. In the simulated image, the percentage of radiation received by all the points takes the center of the field as reference. In the digitized mammography, the percentages of the optical density of all the pixels of the analyzed image are also calculated. The Heel effect causes a Gaussian distribution around the anode–cathode axis and a logarithmic distribution parallel to this axis. Those characteristic distributions are used to determine the center of the radiation field as well as the cathode–anode axis, allowing for the automatic determination of the correlation between these two sets of data. The measurements obtained with our proposed method differs on average by 2.49 mm in the direction perpendicular to the anode–cathode axis and 2.02 mm parallel to the anode–cathode axis of commercial equipment. The method eliminates around 94% of the Heel effect in the radiological image and the objects will reflect their x-ray absorption. To evaluate this method, experimental data was taken from known objects, but could also be done with clinical and digital images

    Impact of primary kidney disease on the effects of empagliflozin in patients with chronic kidney disease: secondary analyses of the EMPA-KIDNEY trial

    No full text
    Background: The EMPA-KIDNEY trial showed that empagliflozin reduced the risk of the primary composite outcome of kidney disease progression or cardiovascular death in patients with chronic kidney disease mainly through slowing progression. We aimed to assess how effects of empagliflozin might differ by primary kidney disease across its broad population. Methods: EMPA-KIDNEY, a randomised, controlled, phase 3 trial, was conducted at 241 centres in eight countries (Canada, China, Germany, Italy, Japan, Malaysia, the UK, and the USA). Patients were eligible if their estimated glomerular filtration rate (eGFR) was 20 to less than 45 mL/min per 1·73 m2, or 45 to less than 90 mL/min per 1·73 m2 with a urinary albumin-to-creatinine ratio (uACR) of 200 mg/g or higher at screening. They were randomly assigned (1:1) to 10 mg oral empagliflozin once daily or matching placebo. Effects on kidney disease progression (defined as a sustained ≥40% eGFR decline from randomisation, end-stage kidney disease, a sustained eGFR below 10 mL/min per 1·73 m2, or death from kidney failure) were assessed using prespecified Cox models, and eGFR slope analyses used shared parameter models. Subgroup comparisons were performed by including relevant interaction terms in models. EMPA-KIDNEY is registered with ClinicalTrials.gov, NCT03594110. Findings: Between May 15, 2019, and April 16, 2021, 6609 participants were randomly assigned and followed up for a median of 2·0 years (IQR 1·5-2·4). Prespecified subgroupings by primary kidney disease included 2057 (31·1%) participants with diabetic kidney disease, 1669 (25·3%) with glomerular disease, 1445 (21·9%) with hypertensive or renovascular disease, and 1438 (21·8%) with other or unknown causes. Kidney disease progression occurred in 384 (11·6%) of 3304 patients in the empagliflozin group and 504 (15·2%) of 3305 patients in the placebo group (hazard ratio 0·71 [95% CI 0·62-0·81]), with no evidence that the relative effect size varied significantly by primary kidney disease (pheterogeneity=0·62). The between-group difference in chronic eGFR slopes (ie, from 2 months to final follow-up) was 1·37 mL/min per 1·73 m2 per year (95% CI 1·16-1·59), representing a 50% (42-58) reduction in the rate of chronic eGFR decline. This relative effect of empagliflozin on chronic eGFR slope was similar in analyses by different primary kidney diseases, including in explorations by type of glomerular disease and diabetes (p values for heterogeneity all >0·1). Interpretation: In a broad range of patients with chronic kidney disease at risk of progression, including a wide range of non-diabetic causes of chronic kidney disease, empagliflozin reduced risk of kidney disease progression. Relative effect sizes were broadly similar irrespective of the cause of primary kidney disease, suggesting that SGLT2 inhibitors should be part of a standard of care to minimise risk of kidney failure in chronic kidney disease. Funding: Boehringer Ingelheim, Eli Lilly, and UK Medical Research Council

    Effects of empagliflozin on progression of chronic kidney disease: a prespecified secondary analysis from the empa-kidney trial

    No full text
    Background: Sodium-glucose co-transporter-2 (SGLT2) inhibitors reduce progression of chronic kidney disease and the risk of cardiovascular morbidity and mortality in a wide range of patients. However, their effects on kidney disease progression in some patients with chronic kidney disease are unclear because few clinical kidney outcomes occurred among such patients in the completed trials. In particular, some guidelines stratify their level of recommendation about who should be treated with SGLT2 inhibitors based on diabetes status and albuminuria. We aimed to assess the effects of empagliflozin on progression of chronic kidney disease both overall and among specific types of participants in the EMPA-KIDNEY trial. Methods: EMPA-KIDNEY, a randomised, controlled, phase 3 trial, was conducted at 241 centres in eight countries (Canada, China, Germany, Italy, Japan, Malaysia, the UK, and the USA), and included individuals aged 18 years or older with an estimated glomerular filtration rate (eGFR) of 20 to less than 45 mL/min per 1·73 m2, or with an eGFR of 45 to less than 90 mL/min per 1·73 m2 with a urinary albumin-to-creatinine ratio (uACR) of 200 mg/g or higher. We explored the effects of 10 mg oral empagliflozin once daily versus placebo on the annualised rate of change in estimated glomerular filtration rate (eGFR slope), a tertiary outcome. We studied the acute slope (from randomisation to 2 months) and chronic slope (from 2 months onwards) separately, using shared parameter models to estimate the latter. Analyses were done in all randomly assigned participants by intention to treat. EMPA-KIDNEY is registered at ClinicalTrials.gov, NCT03594110. Findings: Between May 15, 2019, and April 16, 2021, 6609 participants were randomly assigned and then followed up for a median of 2·0 years (IQR 1·5-2·4). Prespecified subgroups of eGFR included 2282 (34·5%) participants with an eGFR of less than 30 mL/min per 1·73 m2, 2928 (44·3%) with an eGFR of 30 to less than 45 mL/min per 1·73 m2, and 1399 (21·2%) with an eGFR 45 mL/min per 1·73 m2 or higher. Prespecified subgroups of uACR included 1328 (20·1%) with a uACR of less than 30 mg/g, 1864 (28·2%) with a uACR of 30 to 300 mg/g, and 3417 (51·7%) with a uACR of more than 300 mg/g. Overall, allocation to empagliflozin caused an acute 2·12 mL/min per 1·73 m2 (95% CI 1·83-2·41) reduction in eGFR, equivalent to a 6% (5-6) dip in the first 2 months. After this, it halved the chronic slope from -2·75 to -1·37 mL/min per 1·73 m2 per year (relative difference 50%, 95% CI 42-58). The absolute and relative benefits of empagliflozin on the magnitude of the chronic slope varied significantly depending on diabetes status and baseline levels of eGFR and uACR. In particular, the absolute difference in chronic slopes was lower in patients with lower baseline uACR, but because this group progressed more slowly than those with higher uACR, this translated to a larger relative difference in chronic slopes in this group (86% [36-136] reduction in the chronic slope among those with baseline uACR <30 mg/g compared with a 29% [19-38] reduction for those with baseline uACR ≥2000 mg/g; ptrend<0·0001). Interpretation: Empagliflozin slowed the rate of progression of chronic kidney disease among all types of participant in the EMPA-KIDNEY trial, including those with little albuminuria. Albuminuria alone should not be used to determine whether to treat with an SGLT2 inhibitor. Funding: Boehringer Ingelheim and Eli Lilly
    corecore